Mean curvature flow of monotone Lagrangian submanifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singularity of Mean Curvature Flow of Lagrangian Submanifolds

In this article we study the tangent cones at first time singularity of a Lagrangian mean curvature flow. If the initial compact submanifold Σ0 is Lagrangian and almost calibrated by ReΩ in a Calabi-Yau n-fold (M,Ω), and T > 0 is the first blow-up time of the mean curvature flow, then the tangent cone of the mean curvature flow at a singular point (X0, T ) is a stationary Lagrangian integer mul...

متن کامل

Singularities of Lagrangian Mean Curvature Flow: Monotone Case

We study the formation of singularities for the mean curvature flow of monotone Lagrangians in C. More precisely, we show that if singularities happen before a critical time then the tangent flow can be decomposed into a finite union of area-minimizing Lagrangian cones (Slag cones). When n = 2, we can improve this result by showing that connected components of the rescaled flow converge to an a...

متن کامل

The Mean Curvature Flow for Isoparametric Submanifolds

A submanifold in space forms is isoparametric if the normal bundle is flat and principal curvatures along any parallel normal fields are constant. We study the mean curvature flow with initial data an isoparametric submanifold in Euclidean space and sphere. We show that the mean curvature flow preserves the isoparametric condition, develops singularities in finite time, and converges in finite ...

متن کامل

The Mean Curvature Flow Smoothes Lipschitz Submanifolds

The mean curvature flow is the gradient flow of volume functionals on the space of submanifolds. We prove a fundamental regularity result of mean curvature flow in this paper: a Lipschitz submanifold with small local Lipschitz norm becomes smooth instantly along the mean curvature flow. This generalizes the regularity theorem of Ecker and Huisken for Lipschitz hypersurfaces. In particular, any ...

متن کامل

Mean Curvature Flows of Lagrangian Submanifolds with Convex Potentials

This article studies the mean curvature flow of Lagrangian submanifolds. In particular, we prove the following global existence and convergence theorem: if the potential function of a Lagrangian graph in T 2n is convex, then the flow exists for all time and converges smoothly to a flat Lagrangian submanifold.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2007

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-007-0126-3